TECHNOLOGY INSPIRATION
Technology-People-Innovation

Articles by "Capacitors"

  • A Capacitor consists of two metal plates separated by a dielectric.
  • The dielectric can be made of many insulating materials such as air, glass, paper, plastic etc.
  • A capacitor is capable of storing electrical charge and energy.
  • The higher the value of capacitance, the more charge the capacitor can store.
  • The larger the area of the plates or the smaller their separation the more charge the capacitor can store.
  • A capacitor is said to be “Fully Charged” when the voltage across its plates equals the supply voltage.
  • The symbol for electrical charge is Q and its unit is the Coulomb.
  • Electrolytic capacitors are polarized. They have a +ve and a -ve terminal.
  • Capacitance is measured in Farads, which is a very large unit so micro-Farad ( uF ), nano-Farad ( nF ) and pico-Farad ( pF ) are generally used.
  • Capacitors that are daisy chained together in a line are said to be connected in Series.
  • Capacitors that have both of their respective terminals connected to each terminal of another capacitor are said to be connected in Parallel.
  • Parallel connected capacitors have a common supply voltage across them.
  • Series connected capacitors have a common current flowing through them.
  • Capacitive reactance is the opposition to current flow in AC circuits.
  • In AC capacitive circuits the voltage “lags” the current by 90o.
 
The basic construction and symbol for a parallel plate capacitor is given as:
capacitor tutorial the symbol

We have seen previously that capacitors are electrical energy storage devices that have the ability to store an electrical charge, Q. Unlike the resistor, which dissipates energy in the form of heat, the ideal capacitor does not loose its energy. We have also seen that the simplest form of a capacitor is two parallel conducting metal plates which are separated by an insulating material, such as air, mica, paper, ceramic, etc, and called the dielectric through a distance, “d”.

ultracapacitor energy storage
A Typical Ultracapacitor
Capacitors store energy as a result of their ability to store charge with the amount of charge stored on a capacitor depending on the voltage, V applied across its plates, and the greater the voltage, the more charge will be stored by the capacitor as: Q ∝ V.
Also, a capacitor has a constant of proportionality, called capacitance, symbol C, which represents the capacitor’s ability or capacity to store an electrical charge with the amount of charge depending on a capacitor capacitance value as: Q ∝ C.
Then we can see that there is a relationship between the charge, Q, voltage V and capacitance C, and the larger the capacitance, the higher is the amount of charge stored on a capacitor for the same amount of voltage and we can define this relationship for a capacitor as being:

Charge on a Capacitor

capacitance and charge on a capacitor
    Where: Q (Charge, in Coulombs) = C (Capacitance, in Farads) x V (Voltage, in Volts)
The unit of capacitance is the coulomb/volt, which is also called the Farad (F) [named after M. Faraday] with one farad being defined as the capacitance of a capacitor, which requires a charge of 1 coulomb to establish a potential difference of 1 volt between its two plates.
But a conventional one farad capacitor would be very large for most practical electronic applications, hence much smaller units like the microfarad (uF), nanofarad (nF) and picofarad (pF) are commonly used where:
  • Microfarad  (μF)   1μF = 1/1,000,000 = 0.000001 = 10-6 F
  • Nanofarad  (nF)   1nF = 1/1,000,000,000 = 0.000000001 = 10-9 F
  • Picofarad  (pF)   1pF = 1/1,000,000,000,000 = 0.000000000001 = 10-12 F
However, there is another type of capacitor available, called an Ultracapacitor or Supercapacitorwhich can provide values from a few milli-farads (mF) to ten’s of farads of capacitance in a very small size allowing for much more electrical energy to be stored between their plates.
In our tutorial about Capcitance and Charge we saw that the energy stored in a capacitor is given by the equation:
energy stored in a capacitor
 
Where: E is the energy stored in the electric field in joules, V is the potential difference across the plates and C is the capacitance of the capacitor in farads and defined as:
capacitance of a capacitor
 
Where: Îµ is the permittivity of the material between the plates, A is the area of the plates, and d is the separation of the plates.
Ultracapacitors are another type of capacitor which is constructed to have a large conductive plate, called an electrode, surface area (A) as well as a very small distance (d) between them. Unlike conventional capacitors that use a solid and dry dielectric material such as Teflon, Polyethylene, Paper, etc, the ultracapacitor uses a liquid or wet electrolyte between its electrodes making it more of an electrochemical device similar to an electrolytic capacitor.
Although an ultracapacitor is a type of electrochemical device, no chemical reactions are involved in the storing of its electrical energy. This means that the ultra-capacitor remains effectively an electrostatic device storing its electrical energy in the form of an electric field between its two conducting electrodes as shown.

Ultracapacitor Construction

ultracapacitor construction
 
The double sided coated electrodes are made from graphite carbon in the form of activated conductive carbon, carbon nanotubes or carbon gels. A porous paper membrane called a separator keeps the electrodes apart but allows positive ion to pass through while blocking the larger electrons. Both the paper separator and carbon electrodes are impregnated with the liquid electrolyte with an aluminium foil used in between the two to act as the current collector making electrical connection to the ultracapacitors solder tabs.
The double layer construction of the carbon electrodes and separator may be very thin but their effective surface area into the thousands of meters squared when coiled up together. Then in order to increase the capacitance of an ultra-capacitor, it is obvious that we need to increase the contact surface area, A (in m2) without increasing the capacitors physical size, or use a special type of electrolyte to increase the available positive ions to increase conductivity.
Then ultra-capacitors make excellent energy storage devices because of their high values of capacitance up into the hundreds of farads, due to the very small distance d or separation of their plates and the electrodes high surface area A for the formation on the surface of a layer of electrolytic ions forming a double layer. This construction effectively creates two capacitors, one at each carbon electrode, giving the ultracapacitor the secondary name of “double layer capacitor” forming two capacitors in series.
However, the problem with this small size is that the voltage across the capacitor can only be very low as the rated voltage of the ultra-capacitor cell is determined mainly by the decomposition voltage of the electrolyte. Then a typical capacitor cell has a working voltage of between 1 to 3 volts, depending on the electrolyte used, which can limit the amount of electrical energy it can store.
In order to store charge at a reasonable voltage ultracapacitors have to be connected in series. Unlike electrolytic and electrostatic capacitors, ultra-capacitors are characterized by there low terminal voltage. In order to increase there rated terminal voltage to tens of volts, ultracapacitor cells must be connected in series, or in parallel to achieve higher capacitance values as shown.

Increasing An Ultracapacitors Value

increasing an ultracapacitors value
 
Where: VCELL is the voltage of one cell, and CCELL is the capacitance of one cell.
As the voltage of each capacitor cell is about 3.0 volts, connecting more capacitor cells together in series will increase the voltage. While connecting more capacitor cells in parallel will increase its capacitance. Then we can define the total voltage and total capacitance of a ultracapacitor bank as:
ultracapacitor voltage and capacitance value
 
Where: M is the number of columns and N is the number of rows. Note also that like batteries, ultracapacitor and supercapacitors have a defined polarity with the positive terminal marked on the capacitor body.

Ultracapacitor Example No1

A 5.5 volt, 1.5 farad ultracapacitor is required as an energy storage backup device for an electronic circuit. If the ultracapacitor is to be made from individual 2.75v, 0.5F cells, calculate the number of cells required and the layout of the array.
ultracapacitor voltage
 
The array will therefore have two capacitor cells of 2.75v each connected in series to provide the required 5.5v.
ultracapacitor capacitance
 
Then the array will have a total of six individual columns, consisting of two rows of six thereby forming an ultracapacitor with a 6 x 2 array as shown.

6×2 Ultracapacitor Array

ultracapacitor array

Ultracapacitor Energy

As with all capacitors, an ultracapacitor is a energy storage device. Electrical energy is stored as charge in the electric field between its plates and as a result of this stored energy, a potential difference, that is a voltage, exists between the two plates. During charging (current flowing through the ultracapacitor from the connected supply), electrical energy is stored between its plates.
Once the ultracapacitor is charged, current stops flowing from the supply and the ultracapacitors terminal voltage is equal to the voltage of the supply. As a result, a charged ultracapacitor will store this electrical energy even when removed from the voltage supply until it is needed acting as an energy storage device.
When discharging (current flowing out), the ultracapacitor changes this stored energy into electrical energy to supply the connected load. Then an ultracapacitor does not consume any energy itself but instead will store and release electrical energy as required with the amount of energy stored in the ultracapacitor being in proportion to the capacitance value of the capacitor.
As previously mentioned, the amount of energy stored is proportional to the capacitance C and the square of the voltage V across its terminals giving.
energy stored in an ultracapacitor
 
Where: E is the energy stored in joules. Then for our ultracapacitor example above, the amount of energy stored by the array is given as:
electrical energy stored our ultracapacitor
 
Then the maximum amount of energy that can be stored by our ultracapacitor is 22.7 joules, which was originally supplied by the 5.5 volt charging supply. This stored energy remains available as charge in the electrolyte dielectric and when connected to a load, the ultracapacitors entire 22.69J of energy is made available as an electric current. Obviously, when the ultracapacitor is fully discharged, the stored energy is zero.
Then we can see that an ideal ultracapacitor would not consume or dissipate energy, but instead take power from an external charging circuit to store energy in its electrolyte field and then return this stored energy when delivering power to a load.
In our simple example above, the energy stored by the ultracapacitor was about 23 joules, but with large capacitance values and higher voltage ratings, the energy density of ultracapacitors can be very large making them ideal as energy storage devices.
In fact, ultracapacitors with ratings into the thousands of farads and hundreds of volts are now being used in hybrid electric vehicles (including Formula 1) as solid state energy storage devices for regenerative braking systems as they can quickly giving out and receiving energy during braking and accelerating afterwards. Ultra and supercapacitors are also used in renewable energy systems to replace lead acid batteries.

Ultracapacitor Summary

We have seen that an ultracapacitor is an electrochemical device consisting of two porous electrodes, usually made up of activated carbon immersed in an electrolyte solution that stores charge electrostatically. This arrangement effectively creates two capacitors, one at each carbon electrode, connected in series.
The ultracapacitor is available with capacitances in the hundreds of farads all within a very small physical size and can achieve much higher power density than batteries. However, the voltage rating of an ultracapacitor is usually less than about 3 volts so several capacitors have to be connected in series and parallel combinations to provide any useful voltage.
Ultracapacitors can be used as energy storage devices similar to a battery, and in fact are classed as an ultracapacitor battery. But unlike a battery, they can achieve much higher power densities for a short duration. They are used in many hybrid petrol vehicles and fuel cell driven electric vehicles because of there ability to quickly discharge high voltages and then be recharged. But by operating ultracapacitors with fuel cells and batteries peak power demands, and transient load changes can be controlled more efficiently.

Capacitors are said to be connected together "in series" when they are effectively "daisy chained" together in a single line. The charging current ( iC ) flowing through the capacitors isTHE SAME for all capacitors as it only has one path to follow.

Then, Capacitors in Series all have the same current flowing through them as iT = i1 = i2 = i3 etc. Therefore each capacitor will store the same amount of electrical charge, Q on its plates regardless of its capacitance. This is because the charge stored by a plate of any one capacitor must have come from the plate of its adjacent capacitor. Therefore, capacitors connected together in series must have the same charge.

QT = Q1 = Q2 = Q3 ….etc

Consider the following circuit in which the three capacitors, C1C2 and C3  are all connected together in a series branch across a supply voltage between points A and B.

Capacitors in a Series Connection

capacitors in series circuit

 

In the previous parallel circuit we saw that the total capacitance, CT of the circuit was equal to the sum of all the individual capacitors added together. In a series connected circuit however, the total or equivalent capacitance CT is calculated differently.

In the series circuit above the right hand plate of the first capacitor, C1 is connected to the left hand plate of the second capacitor, C2 whose right hand plate is connected to the left hand plate of the third capacitor, C3. Then this series connection means that in a DC connected circuit, capacitor C2 is effectively isolated from the circuit.

The result of this is that the effective plate area has decreased to the smallest individual capacitance connected in the series chain. Therefore the voltage drop across each capacitor will be different depending upon the values of the individual capacitance's. Then by applying Kirchoff's Voltage Law, ( KVL ) to the above circuit, we get:

current through capacitors in series

 

Since Q = CV and rearranging for V = Q/C, substituting Q/C for each capacitor voltage VC in the above KVL equation will give us:

circuit current

 

dividing each term through by Q gives

Series Capacitors Equation

capacitors in series equation

When adding together Capacitors in Series, the reciprocal ( 1/C ) of the individual capacitors are all added together ( just like resistors in parallel ) instead of the capacitance's themselves. Then the total value for capacitors in series equals the reciprocal of the sum of the reciprocals of the individual capacitances.

Capacitors in Series Example No1

Taking the three capacitor values from the above example, we can calculate the total capacitance,CT for the three capacitors in series as:

total capacitance

 

One important point to remember about capacitors that are connected together in a series configuration, is that the total circuit capacitance ( CT ) of any number of capacitors connected together in series will always be LESS than the value of the smallest capacitor in the series and in our example above CT = 0.055uF with the value of the smallest capacitor in the series chain is only0.1uF.

This reciprocal method of calculation can be used for calculating any number of capacitors connected together in a single series network. If however, there are only two capacitors in series, then a much simpler and quicker formula can be used and is given as:

total capacitance in series

With series connected resistors, the sum of all the voltage drops across the series circuit will be equal to the applied voltage VS ( Kirchoff's Voltage Law ) and this is also true about capacitors in series.

With series connected capacitors, the capacitive reactance of the capacitor acts as an impedance due to the frequency of the supply. This capacitive reactance produces a voltage drop across each capacitor, therefore the series connected capacitors act as a capacitive voltage divider network.

The result is that the voltage divider formula applied to resistors can also be used to find the individual voltages for two capacitors in series. Then:

voltage across series capacitors

Where: CX is the capacitance of the capacitor in question, VS is the supply voltage across the series chain and VCX is the voltage drop across the target capacitor.

Capacitors in Series Example No2

Find the overall capacitance and the individual rms voltage drops across the following sets of two capacitors in series when connected to a 12V a.c. supply.

  • a)  two capacitors each with a capacitance of 47nF
  • b)  one capacitor of 470nF connected in series to a capacitor of 1uF

a) Total Capacitance,

total series capacitance

 

Voltage drop across the two identical 47nF capacitors,

capacitor voltage drop

 

b) Total Capacitance,

series capacitance

 

Voltage drop across the two non-identical Capacitors: C1 = 470nF and C2 = 1uF.

Individual Series Voltages

 

Since kirchoff's voltage law applies to this and every series connected circuit, the total sum of the individual voltage drops will be equal in value to the supply voltage, VS. Then 8.16 + 3.84 = 12V.

Note also that if the capacitor values are the same, 47nF in our example, the supply voltage is divided equally across each capacitor as shown, because each capacitor shares an equal amount of charge ( Q = C x V = 0.564uC ) and therefore has half ( or percentage fraction for more than two capacitors ) of the applied voltage, VS.

When the capacitor values are different, the larger value capacitor will charge itself to a lower voltage and the smaller value capacitor to a higher voltage, and in our example above this was 3.84 and 8.16 volts respectively, to maintain the same amount of charge on the plates of both capacitors as shown.

charge on capacitors in series

 

Note that the ratios of the voltage drops across the two capacitors connected in series will always remain the same regardless of the supply frequency as their reactance, XC will remain proportionally the same.

Then the two voltage drops of 8.16 volts and 3.84 volts above in our simple example will remain the same even if the supply frequency is increased from 100Hz to 100kHz.

Although the voltage drops across each capacitor will be different for different values of capacitance, the coulomb charge across the plates will be equal because the same amount of current flow exists throughout a series circuit as all the capacitors are being supplied with the same number or quantity of electrons.

In other words, if the charge across each capacitors plates is the same, as Q is constant, then as its capacitance decreases the voltage drop across the capacitors plates increases, because the charge is large with respect to the capacitance. Likewise, a larger capacitance will result in a smaller voltage drop across its plates because the charge is small with respect to the capacitance.

Capacitors in Series Summary

Then to summarise, the total or equivalent capacitance, CT of a circuit containing Capacitors in Series is the reciprocal of the sum of the reciprocals of all of the individual capacitance's added together.

Also for capacitors connected in series, all the series connected capacitors will have the same charging current flowing through them as iT = i1 = i2 = i3 etc. Two or more capacitors in series will always have equal amounts of coulomb charge across their plates.

As the charge, ( Q ) is equal and constant, the voltage drop across the capacitor is determined by the value of the capacitor only as V = Q ÷ C. A small capacitance value will result in a larger voltage while a large value of capacitance will result in a smaller voltage drop.


Capacitors are said to be connected together "in series" when they are effectively "daisy chained" together in a single line. The charging current ( iC ) flowing through the capacitors isTHE SAME for all capacitors as it only has one path to follow.

Then, Capacitors in Series all have the same current flowing through them as iT = i1 = i2 = i3 etc. Therefore each capacitor will store the same amount of electrical charge, Q on its plates regardless of its capacitance. This is because the charge stored by a plate of any one capacitor must have come from the plate of its adjacent capacitor. Therefore, capacitors connected together in series must have the same charge.

QT = Q1 = Q2 = Q3 ….etc

Consider the following circuit in which the three capacitors, C1C2 and C3  are all connected together in a series branch across a supply voltage between points A and B.

Capacitors in a Series Connection

capacitors in series circuit

 

In the previous parallel circuit we saw that the total capacitance, CT of the circuit was equal to the sum of all the individual capacitors added together. In a series connected circuit however, the total or equivalent capacitance CT is calculated differently.

In the series circuit above the right hand plate of the first capacitor, C1 is connected to the left hand plate of the second capacitor, C2 whose right hand plate is connected to the left hand plate of the third capacitor, C3. Then this series connection means that in a DC connected circuit, capacitor C2 is effectively isolated from the circuit.

The result of this is that the effective plate area has decreased to the smallest individual capacitance connected in the series chain. Therefore the voltage drop across each capacitor will be different depending upon the values of the individual capacitance's. Then by applying Kirchoff's Voltage Law, ( KVL ) to the above circuit, we get:

current through capacitors in series

 

Since Q = CV and rearranging for V = Q/C, substituting Q/C for each capacitor voltage VC in the above KVL equation will give us:

circuit current

 

dividing each term through by Q gives

Series Capacitors Equation

capacitors in series equation

When adding together Capacitors in Series, the reciprocal ( 1/C ) of the individual capacitors are all added together ( just like resistors in parallel ) instead of the capacitance's themselves. Then the total value for capacitors in series equals the reciprocal of the sum of the reciprocals of the individual capacitances.

Capacitors in Series Example No1

Taking the three capacitor values from the above example, we can calculate the total capacitance,CT for the three capacitors in series as:

total capacitance

 

One important point to remember about capacitors that are connected together in a series configuration, is that the total circuit capacitance ( CT ) of any number of capacitors connected together in series will always be LESS than the value of the smallest capacitor in the series and in our example above CT = 0.055uF with the value of the smallest capacitor in the series chain is only0.1uF.

This reciprocal method of calculation can be used for calculating any number of capacitors connected together in a single series network. If however, there are only two capacitors in series, then a much simpler and quicker formula can be used and is given as:

total capacitance in series

With series connected resistors, the sum of all the voltage drops across the series circuit will be equal to the applied voltage VS ( Kirchoff's Voltage Law ) and this is also true about capacitors in series.

With series connected capacitors, the capacitive reactance of the capacitor acts as an impedance due to the frequency of the supply. This capacitive reactance produces a voltage drop across each capacitor, therefore the series connected capacitors act as a capacitive voltage divider network.

The result is that the voltage divider formula applied to resistors can also be used to find the individual voltages for two capacitors in series. Then:

voltage across series capacitors

Where: CX is the capacitance of the capacitor in question, VS is the supply voltage across the series chain and VCX is the voltage drop across the target capacitor.

Capacitors in Series Example No2

Find the overall capacitance and the individual rms voltage drops across the following sets of two capacitors in series when connected to a 12V a.c. supply.

  • a)  two capacitors each with a capacitance of 47nF
  • b)  one capacitor of 470nF connected in series to a capacitor of 1uF

a) Total Capacitance,

total series capacitance

 

Voltage drop across the two identical 47nF capacitors,

capacitor voltage drop

 

b) Total Capacitance,

series capacitance

 

Voltage drop across the two non-identical Capacitors: C1 = 470nF and C2 = 1uF.

Individual Series Voltages

 

Since kirchoff's voltage law applies to this and every series connected circuit, the total sum of the individual voltage drops will be equal in value to the supply voltage, VS. Then 8.16 + 3.84 = 12V.

Note also that if the capacitor values are the same, 47nF in our example, the supply voltage is divided equally across each capacitor as shown, because each capacitor shares an equal amount of charge ( Q = C x V = 0.564uC ) and therefore has half ( or percentage fraction for more than two capacitors ) of the applied voltage, VS.

When the capacitor values are different, the larger value capacitor will charge itself to a lower voltage and the smaller value capacitor to a higher voltage, and in our example above this was 3.84 and 8.16 volts respectively, to maintain the same amount of charge on the plates of both capacitors as shown.

charge on capacitors in series

 

Note that the ratios of the voltage drops across the two capacitors connected in series will always remain the same regardless of the supply frequency as their reactance, XC will remain proportionally the same.

Then the two voltage drops of 8.16 volts and 3.84 volts above in our simple example will remain the same even if the supply frequency is increased from 100Hz to 100kHz.

Although the voltage drops across each capacitor will be different for different values of capacitance, the coulomb charge across the plates will be equal because the same amount of current flow exists throughout a series circuit as all the capacitors are being supplied with the same number or quantity of electrons.

In other words, if the charge across each capacitors plates is the same, as Q is constant, then as its capacitance decreases the voltage drop across the capacitors plates increases, because the charge is large with respect to the capacitance. Likewise, a larger capacitance will result in a smaller voltage drop across its plates because the charge is small with respect to the capacitance.

Capacitors in Series Summary

Then to summarise, the total or equivalent capacitance, CT of a circuit containing Capacitors in Series is the reciprocal of the sum of the reciprocals of all of the individual capacitance's added together.

Also for capacitors connected in series, all the series connected capacitors will have the same charging current flowing through them as iT = i1 = i2 = i3 etc. Two or more capacitors in series will always have equal amounts of coulomb charge across their plates.

As the charge, ( Q ) is equal and constant, the voltage drop across the capacitor is determined by the value of the capacitor only as V = Q ÷ C. A small capacitance value will result in a larger voltage while a large value of capacitance will result in a smaller voltage drop.


When capacitors are connected across a direct current DC supply voltage they become charged to the value of the applied voltage, acting like temporary storage devices and maintain or hold this charge indefinitely as long as the supply voltage is present. During this charging process, a charging current, ( i ) will flow into the capacitor opposing any changes to the voltage at a rate that is equal to the rate of change of the electrical charge on the plates.

This charging current can be defined as: i = CdV/dt. Once the capacitor is "fully-charged" the capacitor blocks the flow of any more electrons onto its plates as they have become saturated. However, if we apply an alternating current or AC supply, the capacitor will alternately charge and discharge at a rate determined by the frequency of the supply. Then the Capacitance in AC circuits varies with frequency as the capacitor is being constantly charged and discharged.

We know that the flow of electrons onto the plates of a Capacitor is directly proportional to the rate of change of the voltage across those plates. Then, we can see that capacitors in AC circuits like to pass current when the voltage across its plates is constantly changing with respect to time such as in AC signals, but it does not like to pass current when the applied voltage is of a constant value such as in DC signals. Consider the circuit below.

AC Capacitor Circuit

capacitance in ac circuits

 

In the purely capacitive circuit above, the capacitor is connected directly across the AC supply voltage. As the supply voltage increases and decreases, the capacitor charges and discharges with respect to this change. We know that the charging current is directly proportional to the rate of change of the voltage across the plates with this rate of change at its greatest as the supply voltage crosses over from its positive half cycle to its negative half cycle or vice versa at points, 0o and 180oalong the sine wave.

Consequently, the least voltage change occurs when the AC sine wave crosses over at its maximum or minimum peak voltage level, ( Vm ). At these positions in the cycle the maximum or minimum currents are flowing through the capacitor circuit and this is shown below.

AC Capacitor Phasor Diagram

ac capacitor phasor diagram

 

At 0o the rate of change of the supply voltage is increasing in a positive direction resulting in a maximum charging current at that instant in time. As the applied voltage reaches its maximum peak value at 90o for a very brief instant in time the supply voltage is neither increasing or decreasing so there is no current flowing through the circuit.

As the applied voltage begins to decrease to zero at 180o, the slope of the voltage is negative so the capacitor discharges in the negative direction. At the 180o point along the line the rate of change of the voltage is at its maximum again so maximum current flows at that instant and so on.

Then we can say that for capacitors in AC circuits the instantaneous current is at its minimum or zero whenever the applied voltage is at its maximum and likewise the instantaneous value of the current is at its maximum or peak value when the applied voltage is at its minimum or zero.

From the waveform above, we can see that the current is leading the voltage by 1/4 cycle or 90o as shown by the vector diagram. Then we can say that in a purely capacitive circuit the alternating voltage lags the current by 90o.

We know that the current flowing through the capacitance in AC circuits is in opposition to the rate of change of the applied voltage but just like resistors, capacitors also offer some form of resistance against the flow of current through the circuit, but with capacitors in AC circuits this AC resistance is known as Reactance or more commonly in capacitor circuits, Capacitive Reactance, so capacitance in AC circuits suffers from Capacitive Reactance.

Capacitive Reactance

Capacitive Reactance in a purely capacitive circuit is the opposition to current flow in AC circuits only. Like resistance, reactance is also measured in Ohm's but is given the symbol X to distinguish it from a purely resistive value. As reactance is a quantity that can also be applied to Inductors as well as Capacitors, when used with capacitors it is more commonly known as Capacitive Reactance.

For capacitors in AC circuits, capacitive reactance is given the symbol Xc. Then we can actually say that Capacitive Reactance is a capacitors resistive value that varies with frequency. Also, capacitive reactance depends on the capacitance of the capacitor in Farads as well as the frequency of the AC waveform and the formula used to define capacitive reactance is given as:

Capacitive Reactance

capacitive reactance

Where:
  F is in Hertz and C is in Farads.
  2Ï€F can also be expressed collectively as the Greek letter Omegaω to denote an angular frequency.

From the capacitive reactance formula above, it can be seen that if either of the Frequency orCapacitance where to be increased the overall capacitive reactance would decrease. As the frequency approaches infinity the capacitors reactance would reduce to zero acting like a perfect conductor.

However, as the frequency approaches zero or DC, the capacitors reactance would increase up to infinity, acting like a very large resistance. This means then that capacitive reactance is "Inversely proportional" to frequency for any given value of Capacitance and this shown below:

Capacitive Reactance against Frequency

capacitive reactance against frequency

The capacitive reactance of the capacitor decreases as the frequency across it increases therefore capacitive reactance is inversely proportional to frequency.

The opposition to current flow, the electrostatic charge on the plates (its AC capacitance value) remains constant as it becomes easier for the capacitor to fully absorb the change in charge on its plates during each half cycle.

Also as the frequency increases the current flowing through the capacitor increases in value because the rate of voltage change across its plates increases.

Then we can see that at DC a capacitor has infinite reactance (open-circuit), at very high frequencies a capacitor has zero reactance (short-circuit).

AC Capacitance Example No1.

Find the rms current flowing in an AC capacitive circuit when a 4uF capacitor is connected across a 880V, 60Hz supply.

Answer Example No1

 

In AC circuits, the sinusoidal current through a capacitor, which leads the voltage by 90o, varies with frequency as the capacitor is being constantly charged and discharged by the applied voltage. The AC impedance of a capacitor is known as Reactance and as we are dealing with capacitor circuits, more commonly called Capacitive ReactanceXC

AC Capacitance Example No2.

When a parallel plate capacitor was connected to a 60Hz AC supply, it was found to have a reactance of 390 ohms. Calculate the value of the capacitor in micro-farads.

capacitance of a capacitor

 

This capacitive reactance is inversely proportional to frequency and produces the opposition to current flow around a capacitive AC circuit as we looked at in the AC Capacitance tutorial in the AC Theory section.


Contact Form

Name

Email *

Message *

Powered by Blogger.
Javascript DisablePlease Enable Javascript To See All Widget